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Abstract. We discuss the analytic properties of the Callan–Symanzik β-function β(g) associated
with the zero-momentum four-point coupling g in the two-dimensional φ4 model with O(N)

symmetry. Using renormalization-group arguments, we derive the asymptotic behaviour of
β(g) at the fixed point g∗. We argue that β ′(g) = β ′(g∗) + O(|g − g∗|1/7) for N = 1 and
β ′(g) = β ′(g∗) + O(1/ log |g − g∗|) for N � 3. Our claim is supported by an explicit calculation
in the Ising lattice model and by a 1/N calculation for the two-dimensional φ4 theory. We discuss
how these non-analytic corrections may give rise to a slow convergence of the perturbative expansion
in powers of g.

1. Introduction

Renormalization-group theory is a very important tool for the understanding of the critical
behaviour of statistical models in the neighbourhood of the critical point. We consider
models with an N -vector real order parameter and O(N) symmetry. Because of universality,
quantitative predictions can be obtained by studying any theory belonging to the same
universality class. For the models we are dealing with here, we may consider the Ginzburg–
Landau Hamiltonian

H =
∫

ddx

[
1

2

(
∂µ �φ

)2
+

1

2
r �φ2 +

1

4!
g0( �φ2)2

]
(1)

where �φ is anN -component real field. This Hamiltonian describes many interesting systems at
criticality. The liquid–vapour transition in fluids and the infinite-length properties of polymers
in dilute solutions correspond to the N = 1 (Ising) and N = 0 model, respectively; the
4He superfluid phase transition is in the same universality class as the three-dimensional two-
component theory (XY model), while the Hamiltonian (1) with N = 3 describes isotropic
ferromagnetic materials. Three-dimensional N -vector systems and two-dimensional systems
with N < 2 have a conventional critical behaviour: thermodynamic quantities have power-law
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singularities near the critical point. On the other hand, in two dimensions the XY model shows
a Kosterlitz–Thouless transition, while for N � 3 no finite-temperature transition exists: the
correlation length diverges only for T → 0. For N � 3 the theory is asymptotically free
with a critical behaviour described by the perturbative renormalization group applied to the
nonlinear σ -model.

Precise estimates of the critical parameters in the symmetric phase can be obtained using
several different methods. One of them, which in many cases provides very precise results,
relies on a perturbative expansion in powers of the zero-momentum four-point renormalized
coupling g performed at fixed dimension d [1]. The theory is renormalized by introducing a set
of zero-momentum conditions for the (one-particle irreducible) two- and four-point correlation
functions:

�(2)(p)αβ = δαβZ
−1
G

[
m2 + p2 + O(p4)

]
(2)

�(4)(0, 0, 0, 0)αβγ δ = Z−2
G m4−dg 1

3

(
δαβδγ δ + δαγ δβδ + δαδδβγ

)
. (3)

For m → 0, the coupling g is driven toward an infrared-stable zero g∗ of the corresponding
Callan–Symanzik β-function

β(g) ≡ m
∂g

∂m
. (4)

The derivative of the β-function at g∗, β ′(g∗), is related to the leading non-analytic correction-
to-scaling exponent. Usually—but we shall argue here that this may not always be the case—the
leading non-analytic corrections are determined by the critical dimension ω1 of the leading
irrelevant operator: in this case, we have β ′(g∗) = ω1. At present, β(g) has been computed
to six loops in three dimensions [2] and to five loops in two dimensions [3].

Perturbative expansions in powers of g are asymptotic. In order to obtain estimates of
universal critical quantities, it is essential to resum the perturbative series. This can be done
by exploiting their Borel summability and the knowledge of their large-order behaviour (see,
e.g., [4] and references therein). The large-order behaviour of the series S(g) = ∑

skg
k is

related to the singularity gb of the Borel transform B(g) that is closest to the origin. For large
k,

sk ∼ k!(−a)kkb
[
1 + O(k−1)

]
with a = −1/gb. (5)

The value of gb can be obtained by means of a steepest-descent calculation [5, 6]. It depends
only on the Hamiltonian, while the exponent b depends on which Green function is considered.
If the perturbative expansion is Borel summable, then gb is negative. Since the Borel transform
is singular for g = gb, its expansion in powers of g converges only for |g| < |gb|. An analytic
extension can be obtained by a conformal mapping [7], such as

y(g) =
√

1 − g/gb − 1√
1 − g/gb + 1

. (6)

The Borel transform becomes an expansion in powers of y(g) that converges for all positive
values of g, provided that all singularities of the Borel transform are on the real negative axis
[7]. Therefore, the use of the Borel transform and of the conformal mapping (6) transforms
the original asymptotic series into a convergent expansion. Any universal quantity, such as
the critical exponents, is estimated by resumming the corresponding perturbative series and
by evaluating the resummed function of g at the fixed-point value g∗.
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The critical value g∗ of the renormalized coupling is a universal quantity. Therefore, it can
also be obtained by considering any statistical (lattice) model belonging to the corresponding
universality class. Then

g∗ = lim
t→0

g(t) ≡ lim
t→0

[
− 3N

N + 2

χ4

χ2ξd

]
(7)

where t ≡ T/Tc −1, χ is the magnetic susceptibility, ξ the second-moment correlation length
and χ4 the zero-momentum four-point connected correlation function. Using equation (7), one
can obtain an independent estimate of g∗.

An important issue in the field-theoretical (FT) approach concerns the analytic properties
of β(g). General renormalization-group arguments [1, 8, 9] (see also [10, 11]) and explicit
calculations to next-to-leading order within the framework of the 1/N expansion [12, 13]
show that β(g) is not analytic at g = g∗. This fact may cause a slow convergence of the
resummations of the perturbative series to the correct fixed-point value. The reason is that this
resummation method approximates the β-function in the interval [0, g∗] with a sum of analytic
functions. Since, for g = g∗, the β-function is not analytic, the convergence at the endpoint of
the interval is slow. This may also lead to an underestimate of the uncertainty that is usually
derived from stability criteria. In spite of these problems, in three dimensions, FT results
are in good agreement† with the estimates obtained in other approaches [12, 14–19], showing
that the above-mentioned non-analyticity causes only very small effects that are negligible in
most cases. Using general renormalization-group arguments, for three-dimensional models
one expects [8]

β(g) = −β ′(g∗)(g∗ − g)
[
1 + a1(g

∗ − g)p + a2(g
∗ − g) + · · ·] (8)

where β ′(g∗) = ω1 and p is a non-integer exponent that is equal to the smallest of the
following exponent combinations: p = ω2/ω1 − 1, where ω2 is the scaling dimension of the
next-to-leading irrelevant operator, p = 1/(, where ( = ω1ν and p = γ /( − 1. Note
the last exponent that was neglected in [8, 12] and that is due to a subleading correction in
g(t) is proportional to tγ . Such a term is related to the presence of an analytic background
in the free energy. For small values of N , we have ( ≡ ω1ν ≈ 1

2 , ω2/ω1 ≈ 2 [20],
and γ /( > 2, so that p = ω2/ω1 − 1 ≈ 1. In this case the leading non-analytic term
is practically indistinguishable from the analytic one, and therefore, one expects only small
systematic deviations. For increasing values of N , p decreases, but at the same time a1 → 0.
Thus, also in this case we expect the non-analytic terms to give rise to small systematic
deviations.

The situation worsens in the two-dimensional case which we consider here. As a matter
of fact, at variance with the three-dimensional case, two-dimensional FT estimates are much
more imprecise [3]. We shall argue here that the large observed deviations are caused by the
non-analyticity of the renormalization-group functions at g∗. In order to support this argument,
we shall compute the behaviour of the β-function for g → g∗ in two cases in which exact
results can be obtained by exploiting different techniques.

First, we shall address theN = 1 case (i.e. the Ising universality class) in which conformal
field theory (CFT) techniques allow the determination of the whole spectrum of relevant and

† Small discrepancies are only observed for N = 0 and 1. For instance, we may compare the estimates of g∗ and
ω1 obtained using the fixed-dimension FT approach with the apparently best estimates obtained from the analysis of
high-temperature (HT) expansions and from Monte Carlo (MC) simulations for lattice models in the same universality
class. For N = 1, the analysis of the fixed-dimension FT expansion gives g∗ = 1.411(4) and ω1 = 0.799(11) [14], to
be compared with the lattice results g∗ = 1.402(2) [15] (HT) and ω1 = 0.845(10) [16] (MC). The results are in better
agreement for N = 2: the analysis of the fixed-dimension g-expansion leads to g∗ = 1.403(3) and ω1 = 0.789(11)
[14], to be compared with g∗ = 1.396(4) [17] (HT) and ω1 = 0.79(2) [18] (MC).
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irrelevant operators of the theory. We shall first show that CFT predicts ω1 = 2 for the
renormalization-group dimension of the leading irrelevant operator, excluding ω1 = 4

3 , as
has sometimes been claimed. Then, we will consider the lattice Ising model and we will
show that equation (8) holds with β ′(g∗) = γ /ν = 7

4 and p = 1
7 . Note that in this case

β ′(g∗) �= ω1 = 2†. We will then argue that this is the generic behaviour one should expect for
models in the Ising universality class. At variance with the three-dimensional case, here p is
very small and thus it may be responsible for large systematic deviations in the resummation
of the perturbative series. In appendix B we study some simple Borel-summable asymptotic
series behaving as (8) withp = 1

7 . We apply the resummation method described above, finding
very poor estimates of β ′(g∗) with largely underestimated error bars.

Second, we shall study the multicomponent φ4 theory with N � 3. Since the model is
asymptotically free, we can predict ω1 = 2 and we can show that logarithmic corrections
should be expected at the critical point. A large-N calculation confirms the theoretical
predictions.

2. N = 1, φ4 theory in d = 2

Let us first consider the Ising case, i.e. the case in which the fieldφ(x) in theφ4 Hamiltonian is a
one-component real field. In [7] the four-loop series of β(g) is analysed using the resummation
procedure presented in the introduction: they obtain g∗ = 15.5(8) and β ′(g∗) = 1.3(2).
Reference [3] computes the five-loop contribution and presents an analysis of the extended
series using a Padé–Borel resummation: they obtain‡ g∗ = 15.39(25) and β ′(g∗) = 1.31(3).
These results for g∗ do not agree with the very precise estimates obtained by a transfer-
matrix analysis of the standard square-lattice Ising model [21], g∗ = 14.697 35(3), and by
exploiting the form-factor bootstrap approach [22], g∗ = 14.6975(1) (see also [12, 23, 24] for
high-temperature results). The result for β ′(g∗) has been interpreted [3, 4] as an indication in
favour of the exact result β ′(g∗) = 4

3 that would imply the existence of an irrelevant operator
with ω1 = 4

3 . However, the corresponding scaling corrections do not appear in the standard
lattice Ising model in which, thanks to the known exact results (see, e.g., [25–27]), a detailed
analysis of the leading correction terms is possible. In principle, this fact does not imply
that the interpretation of [3, 4] is wrong, since it could be simply explained by the absence
of the corresponding irrelevant operator in the lattice Ising model, which is only one of the
possible realizations of the φ4 universality class. However, we shall show below that this
is not the case and that no subleading operator with ω1 = 4

3 exists in any unitary model
belonging to the Ising universality class. In particular, it does not exist in the N = 1, φ4

theory.
Let us briefly comment on this last point. The ω1 = 4

3 interpretation was supported
by the fact that an operator with renormalization-group dimension ω1 = 4

3 exists in a
particular non-unitary extension of the Ising universality class which is conjectured to describe
Ising percolation. However, such an operator can only exist in non-unitary theories, and
consequently, it cannot be observed in the unitary φ4 theory. We shall argue in this paper
that the estimate of ω1 obtained within the framework of the perturbative expansion at fixed
dimension is strongly affected by non-analytic corrections in the β-function. The fact that
one obtains β ′(g∗) � 4

3 is only a coincidence and is not related to the presence of the non-

† This is due to the fact that the correction-to-scaling term with the smallest exponent appearing in g(t) is tγ and not
tω1ν . A correction term proportional to tγ in g(t) is due to the presence of an analytic background in the free energy.
‡ We applied the Le Guillou–Zinn–Justin resummation method [4, 7], using the conformal mapping (6), to the five-
loop series of [3]: we obtained substantially equivalent results.
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unitary operator with ω1 = 4
3 mentioned above. In order to clarify the issue we have added

in appendix A a discussion on the non-unitary extension of the Ising universality class and its
relation with the Ising percolation problem.

The only ingredients that are needed to extend the Ising result—the absence of an exponent
ω1 = 4

3 —to the most general unitary model in the N = 1 φ4 universality class are Wilson’s
renormalization group and some basic results of CFT.

In Wilson’s approach, we can rewrite H as

H = H∗ +
∑
{O}

uO(m)O (9)

where H∗ is the fixed-point Hamiltonian, {O} is a complete set of operators and uO(m) is the
corresponding nonlinear scaling fields depending on the inverse correlation length m. Then,
we observe that the φ4 theory is unitary. This can be proved to all orders of perturbation
theory. It can also be proved non-perturbatively by considering the lattice regularization
of the model (1). Indeed, the lattice theory corresponding to (1)—and, of course, also
the standard Ising model which is a particular limit of the lattice φ4 theory—with nearest-
neighbour couplings is exactly reflection positive, a property that guarantees the unitarity of
the Minkowski theory. At the critical point the theory becomes conformally invariant. Now
the main point is that within the framework of CFT there exists a complete classification of all
possible Z2 symmetric unitary theories [28, 29]. Moreover, their operator content is exactly
known. This means that all dimensions of the operators O that may appear in equation (9)
giving rise to a unitary theory are known exactly†. In particular, no operator with dimension
ω1 = 4

3 exists.
According to the CFT analysis [21, 31], the leading irrelevant operator is T T̄ , where T

denotes the energy–momentum tensor, which is expected to give rise to corrections of the
order of t2, where t is the reduced temperature. On the square lattice—but not in a rotationally
invariant model or on lattices with different rotational symmetry, for instance, on the triangular
lattice—one must also consider a second operator, T = T 2 + T̄ 2, which is degenerate with the
first one. While T T̄ is rotationally invariant, T breaks rotational invariance and has only the
reduced symmetry of the square lattice. Since the correlation function of T with rotationally
invariant operators vanishes, such an operator should not contribute at order t2 to observables
that are rotationally invariant, but only at order t4 (indeed, 〈TxTyO〉 does not vanish even if O
is rotationally invariant). Of course, T should contribute to order t2 to observables that have
an angular dependence (an explicit example will be given below).

In recent years there has been extensive work trying to understand the origin of the
subleading corrections in the lattice Ising model. The unexpected result is the fact that no
correction-to-scaling term due to T T̄ has been observed. Let us review the evidence for this
fact.

(a) The analysis of the susceptibility [32–34] for h = 0 indicates that the corrections of the
order of t , t2, t3 can be interpreted as purely analytic ones.

(b) The analysis of the free energy on the critical isotherm as a function of h [31] does not
find any evidence of correction-to-scaling terms that can be associated with T T̄ .

(c) The analysis of the free energy, correlation length and susceptibility at the critical point
in a finite box [35, 36] shows the presence of corrections with ω1 = 2. These corrections,
however, appear to be due to T only. Indeed, they are not present on the triangular and

† Let us stress that our argument is by no means original. It was, for instance, already present in [30] that appeared
right after the classification of unitary CFTs. In this respect, our main new contribution is the exact calculation of p
and the use of this result (discussed in detail in appendix B) to show the relevance of non-analytic corrections in the
FT Callan–Symanzik β-function.
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honeycomb lattices [35]—on these lattices T cannot contribute and the first expected
correction has ω1 = 4—and moreover, the dependence of these corrections on the shape
of the box is consistent with the behaviour expected for a spin-four operator as T is [36].

Here, we want to add further evidence for the absence of T T̄ by considering the observables
characterizing the large-distance behaviour of the two-point function on a square lattice.
Indeed, for x → ∞ we can write [37]

〈σ0σx〉 = Z(β)

∫
d2p

(2π)2

eip·x

p̂2 + M(β)2
(10)

where p̂2 = 4
∑

µ sin2(pµ/2) and the integration is extended over the first Brillouin zone.
The quantities Z(β) and M(β) are known exactly [37]. For t ≡ 1 − β/βc → 0, we can write

Z(β) =
(

128
√

2βc

)1/4
u

1/4
t v2

h

[
1 + O(u4

t )
]

(11)

M(β)2 = 16β2
c u

2
t

[
1 + β2

c u
2
t + O(u4

t )
]

(12)

where ut is the nonlinear scaling field associated with the reduced temperature at zero magnetic
field h and vh is related to the nonlinear scaling field uh associated with h by uh = hvh+O(h3).
Explicitly, [21, 33, 38]

ut = t

(
1 +

βc√
2
t +

7β2
c

6
t2 +

17β3
c

6
√

2
t3 + O(t4)

)
(13)

vh = 1 +
βc√

2
t +

23β2
c

16
t2 +

191β3
c

48
√

2
t3 + O(t4). (14)

Using (10) we can derive the angle-dependent correlation length ξ(θ) defined from the large-
distance behaviour of the two-point function along a direction forming an angle θ with the
side of the lattice. Using the expression of ξ(θ) in terms of M(β) reported, for example, in
[39, 40], we obtain†

ξ(θ) = 1

4βcut

[
1 + 1

6β
2
c cos(4θ)u2

t + O(u4
t )

]
. (15)

Thus, we see analytically that no correction of the order of O(t2) appears in the on-shell
renormalization constant Z(β)—both T T̄ and T are absent. In ξ(θ) a O(t2) correction does
appear as already observed in [41]. However, it is proportional to cos(4θ), and thus it is
due only to the leading operator breaking rotational invariance. No contribution from the
rotationally invariant operator T T̄ appears.

The expansion of the Callan–Symanzik β-function can be derived using the same
arguments employed by Nickel [8, 9] in three dimensions. Let us first consider the lattice
Ising model and the coupling g(t) defined in (7) as a function of the reduced temperature. The
expansion of χ and χ4 is well established:

χ = C2u
−7/4
t v2

h

(
1 + p1u

7/4
t + p2u

11/4
t log ut + p3u

11/4
t + · · ·

)
(16)

χ4 = C4u
−11/2
t v4

h

(
1 + p4u

11/4
t + · · ·

)
(17)

whereC2,C4,p1,p2,p3 andp4 are known constants [21, 22, 25, 27, 33, 42]. In particular,p1 =
−0.108 1812 . . . Next, we determine the asymptotic behaviour of µ2 ≡ ∑

x x
2〈σ0σx〉 = 4χξ 2

† In particular, the correlation lengths along the side (θ = 0) and the diagonal (θ = π/4) of the lattice are given,
respectively, by ξ−1

s = − ln tanh β − 2β and ξ−1
d = −√

2 ln sinh 2β.
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from its high-temperature (HT) expansion. The analysis of the 52nd-order HT expansion† of
µ2 shows that its Wegner expansion can be written as

µ2 = A2u
−15/4
t v2

h

(
1 + p5u

2
t + · · ·). (18)

The constant p5 has been computed with high accuracy in the following way. We have first
defined a new series s obtained by expanding in powers of β the quantity (µ2u

15/4
t v−2

h /A2 −
1)u−2

t , where A2 = 1.238 136 098, and ut , vh are given by equations (13) and (14) truncated
at order t3 included. Then, we analysed s by means of first-order inhomogeneous integral
approximants biased to have a singularity at β = βc. We verified that the critical exponent
associated with the singularity is positive and then computed the value of s for β = βc. We
obtain finally‡ p5 = −0.388 720(3). It follows that

g(t) = g∗
[
1 − p1u

7/4
t − p5u

2
t + O(u

11/4
t log ut )

]
. (19)

Since the second-moment mass m(t) = 1/ξ(t) = (4χ/µ2)
1/2 scales as

m(t)2 = 4C2

A2
u2
t

[
1 + O(u

7/4
t )

]
(20)

we obtain for the square-lattice Ising§ β-function

β(g) ≡ m
∂g

∂m
= 2m2

(
dm2

dut

)−1
dg

dut

= − 7
4(g

(
1 + b1|(g|1/7 + b2|(g|2/7 + b3|(g|3/7 + · · ·) (21)

where (g ≡ g∗ − g, and for the non-universal constant b1, b1 = p5(−g∗p1)
−1/7/(7p1) ≈

0.480(4). It follows that β ′(g∗) = 7
4 and p = 1

7 . Let us stress again that this value of
β ′(g∗) is not related to the exponent of the leading irrelevant operator that we expect to be
two. This phenomenon occurs whenever γ < ω1ν. Indeed, in g(t) there is a correction-to-
scaling term proportional to tγ because of the presence of an analytic background in the
free energy [32]. If γ < ω1ν, it represents the leading non-analytic correction in g(t)

and therefore β ′(g∗) = γ /ν �= ω1. It should be noted that such a phenomenon does
not arise in three-dimensional O(N) models, where the leading non-analytic corrections are
determined by the leading irrelevant operator. For instance, for the three-dimensional Ising
model γ /ν = 2 − η � 1.96 > ω1 � 0.8. We also mention the recent result β ′(g∗) � 1.88
obtained in [46] using a numerical approach based on the high-temperature expansion of the
Ising model, which is not too far from our exact prediction 7

4 .
Now, the question is: what behaviour should we expect for the φ4 field theory? In other

words, does equation (19) holds for a generic model in the N = 1, φ4 universality class or

† The HT expansion of µ2 can be found to O(β36) in [8]. The 52nd-order series has been kindly provided by Tony
Guttmann [43].
‡ It is worth noting that p5 ≈ − 1

2C2/A2 = −0.388 722 . . . within error bars, so that µ2 can be written as

µ2 = A2v
2
hu

−15/4
t − 1

2χ + · · · . This equation may be explained in terms of a momentum dependence of the scaling
field uh. Indeed, µ2 is not a zero-momentum quantity and thus it is related to the free energy in the presence of
a non-uniform magnetic field h(x). However, in this case we expect additional contributions to the scaling fields,
proportional to derivatives of h(x) [44]. Our result for µ2 can be explained if the scaling field uh is a functional of
h(x) with a small-momentum behaviour uh = uh|h=constant − 1

8 ∂
2h(x)+ higher derivatives. Note also that the u2

t term
in µ2 cannot be interpreted as a contribution due to irrelevant operators. Indeed, we do not expect O(u2

t ) contributions
associated with T T̄ , nor with the non-rotationally invariant T , since µ2 is a rotationally invariant quantity. This point
needs further investigation.
§ Note that in the lattice model g approaches g∗ from above as t → 0, while in the FT model the opposite happens.
For a discussion see [45] and references therein.
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are some terms absent? And, in particular, are the conditions p1 �= 0 and p2 �= 0 a particular
feature of the lattice Ising model only? Sometimes, see, for example, [47] and the discussion
of [12], it is conjectured that the β-function is analytic in FT models. However, it was shown
in [12] that this conjecture is not true: in the large-N limit, non-analytic terms are indeed
present. Unfortunately, in the two-dimensional case for N = 1, we do not have any analytic
control on the corrections to β(g). Nonetheless, we conjecture that equation (21) also holds
for the FT N = 1 model—of course, with different coefficients b1, b2 since the β-function is
not universal. We have essentially two arguments to support our conjecture.

(a) We do not see any reason why the bulk term that originates the p1t
7/4 contribution in (19)

should not be present. Indeed, the analytic contribution is not a lattice artefact but has a
well defined FT meaning. In the CFT framework, it can be considered as a signature of
the Identity operator and of its conformal family. Thus, also for the FT model, we expect
p1 �= 0.

(b) A t2 correction is certainly present in g(t), since we expect the operator T T̄ to be present
in the FT model. Thus p5 will not be zero in (19), although it will no longer be related to
the correction appearing in µ2.

It is important to note that the strong non-analytic corrections at g = g∗ we have found may
explain the large observed deviations among the perturbative FT estimates of g∗ and β ′(g∗), the
high-precision numerical results for g∗, and our prediction for β ′(g∗). As a test, in appendix B
we have considered a simple Borel-summable function that has an asymptotic behaviour of
the form (21). We have applied the standard resummation method presented above, observing
large systematic deviations at g = g∗ and a systematic underestimate of the error bars. We
should note that these discrepancies, although providing support for the presence of strong
non-analytic corrections at g = g∗, do not support our specific expansion (21). Indeed, even
if p1 = 0 in (19), neglecting logarithmic terms, we would obtain

β(g) = −2(g
(
1 + c1|(g|3/8 + · · ·). (22)

Thus, also in this case, there would be a strong non-analytic correction.

3. N � 3, φ4 theory in d = 2

Let us now consider the multicomponent φ4 theory with N � 3. For N = 3, the Padé–Borel
analysis of the five-loop series [3] yields the estimates g∗ = 12.00(14) and β ′(g∗) = 1.33(2).
The result for g∗ is in reasonable agreement with the more precise estimate g∗ = 12.19(3)
obtained by employing the form-factor bootstrap approach [22, 48]. We shall now argue that the
estimate β ′(g∗) ≈ 4

3 is again incorrect and that the correct value should instead be β ′(g∗) = 2.
The standard scenario predicts that, for N � 3, the theory is massive for all temperatures.

The critical behaviour is controlled by the zero-temperature Gaussian point and can be studied
in perturbation theory in the corresponding N -vector model. One finds only logarithmic
corrections to the purely Gaussian behaviour. It follows that the operators have dimensions
that coincide with their naive (engineering) dimensions, apart from logarithmic multiplicative
corrections related to the so-called anomalous dimensions. The leading irrelevant operator has
dimension two [49] and thus, for m → 0, we expect [50]

g(m) = g∗
{

1 + cm2
(− lnm2

)ζ [
1 + O

(
ln(− lnm2)

lnm2

)]}
(23)
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where ζ is an exponent related to the anomalous dimension of the leading irrelevant operator
and c is a constant. A one-loop calculation within the framework of the O(N ) σ model gives
ζ = 2/(N − 2) [49]. Differentiating with respect to the mass, one obtains

β(g) = m
∂g

∂m
= −2(g

(
1 +

ζ

ln(g
+ · · ·

)
(24)

with (g ≡ g∗ − g. Therefore, one expects β ′(g∗) = 2 with logarithmic corrections.
The expansion (24) for β(g) is confirmed by a next-to-leading order calculation within the

framework of the large-N expansion. Indeed, using the expression for β(g) reported in [13]
and performing an asymptotic expansion around g∗ (see appendix C for details), one finds

β(g) = −2(g∗ − g)

{
1 +

1

N

[
2

ln5

(
1 +

l(5)

ln5

)
+

5

2 ln2 5
+ O

(
l(5)2

ln3 5

)]}
(25)

where l(5) ≡ ln(−2 ln5) and5 ≡ (g∗−g)/g∗. Comparing equation (25) with equation (24)
we obtain ζ = 2/N +O(1/N2), in agreement with the above-mentioned result ζ = 2/(N −2).

Thus, for N � 3 we predict very strong non-analytic corrections at g = g∗. A numerical
study on a function with the asymptotic behaviour (24) (see appendix B) shows that such
corrections give rise to a slow convergence of the perturbative resummations. In particular,
the estimate of ω1 may be incorrect in spite of the stability of the results with the number of
loops considered in the analysis. It is thus not surprising that [3] find β ′(g∗) � 4

3 instead of
the correct result β ′(g∗) = 2.
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Appendix A. Non-unitary extension of the Ising model

The 4
3 operator appears in a non-unitary extension of the Ising model that describes Ising

percolation.
Let us first of all explain what we mean with the notion of ‘non-unitary extension’ of

the Ising universality class. The starting point is the classification of the minimal unitary
conformal field theories discussed in [28, 29].

The operator content of the unitary CFTs that only possess a Z2 symmetry (such as the φ4

theory and its multicritical generalizations) is defined by the weights

hp,q = [(m + 1)p − mq]2 − 1

4m(m + 1)
(A1)

with m = 3, 4, 5, . . . and the constraints 1 � p � (m − 1), 1 � q � p. The relation
between h and the renormalization-group eigenvalue y is y = 2 − 2h. For the Ising model
m = 3. Higher values of m correspond to multicritical Ising-like models (i.e. theories with a
Z2 symmetric potential with powers up to φ2m−2). These are the continuum-limit CFTs that
correspond to the models introduced in [51, 52]. With m = 3 we have only three allowed
combinations of (p, q): (1, 1), (2, 1) and (2, 2) that correspond to the identity, energy and
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spin operators of the Ising model. They are called ‘primary’ fields. From any one of these
primary fields one then has an infinite tower of ‘secondary’ fields whose scaling dimensions
are shifted by integers with respect to those of the primary fields. Since in the Ising model all
the primary fields are relevant, all the irrelevant fields must be shifted by integers, hence they
cannot be distinguished from the analytic corrections. This is the only model in which this
happens. In all other models with m > 3, there are primary fields that are irrelevant and hence
are candidates for non-trivial subleading scaling dimensions.

Besides unitary theories, there is an infinite set of non-unitary ones for all the rational
(but non-integer) values of m. Apart from the fact that they do not fulfil unitarity, they have
the same properties as those with integer m. In particular, their operator content is completely
known and closed expressions for the correlators exist. These models (with both integer and
non-integer values of m) are usually called rational conformal field theories (RCFT).

However, this is not the end of the story. In the last few years it has been realized
that it is also possible to give a meaning, within the framework of the so-called logarithmic
conformal field theories (LCFT) [53], to more general theories, obtained by including in the
operator algebra some of the operators corresponding to the values of p and q excluded in
equation (A1) [54].

For instance, in the Ising case (i.e. m = 3) in which we are interested one should enlarge
the set of operators of the standard Ising CFT to those of the type h3,n, n = 1, 2, . . . and
hk,4, with k = 1, 2 . . . . The LCFT obtained in this way is what we mean by a ‘non-unitary
extension’ of the Ising model.

Despite the fact that these theories are much more difficult to study than the standard
RCFTs, several interesting results have been obtained in these last few years (for a recent
account see, for instance, [55, 56] and references therein). For the purpose of the present
paper we only need to know the scaling dimensions of the new operators. These can be easily
obtained by looking at equation (A1).

In particular, in the Ising case, we see that h3,1 = 5
3 hence y3,1 = − 4

3 , which is exactly
the irrelevant operator that we are looking for. Further examples of such operators (only the
relevant ones are listed) are:

h3,2 = 35
48 hence y3,2 = 13

24

h3,3 = 1
6 hence y3,3 = 5

3

h2,4 = 5
16 hence y2,4 = 11

8 .

Note that, for all the values m > 3 (i.e in the multicritical models), equation (A1) admits
a unitary, well defined, operator of type h3,1 with weight (m + 2)/m so that y = −4/m. Thus,
a naive limit m → 3 would lead to an operator with y = − 4

3 , This argument is usually given
to support the existence of a scaling operator with ω1 = 4

3 (see, e.g., [4]). However, as we
have seen, exactly for m = 3 this operator becomes ‘borderline’ and it no longer belongs to
the Ising universality class, but only to its non-unitary extension. Thus, the limit m → 3 of
equation (A1) cannot be considered as an indication in favour of the presence of a ω1 = 4

3
field in the (unitary) Ising universality class, which the φ4 theory belongs to.

Another context in which the y = 4
3 field appears, which is completely independent and

allows us to share some more light into its meaning, is the Coulomb gas approach to the q-
state Potts models due to Nienhuis [57]. By mapping the Potts model in a suitable vertex-type
model Nienhuis was able to identify both the leading and the subleading thermal and magnetic
operators as a function of q. For q = 2 the subleading thermal operator is exactly y = − 4

3

and the subleading magnetic operator is y = 13
24 (see also [58]). However, as already noted in

[57], these are operators of the vertex model and not of the Ising model and they decouple for
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q = 2. In other words, the vertex model of Nienhuis is a good candidate for an exactly solvable
model whose continuum limit is the non-unitary extension of the Ising model. If one requires
the vertex model to have a ‘physical spectrum’ according to the definition given in [57], then
one selects only the operators of the standard Ising model and the y = 4

3 operator decouples.
The requirement of having a ‘physical spectrum’ is equivalent to imposing unitarity on the
model.

It would be nice to have some kind of insight into the physical meaning of the above-
mentioned operators directly from the Ising model. Some hints in this direction are given by
the so-called ‘Ising percolation’ problem, i.e. the behaviour of the Coniglio–Klein clusters in
the Ising model. It turns out that the relevant operators in the non-unitary extension of the
Ising universality class (i.e. both the standard ones y = 1 and 15

8 and the ‘borderline’ ones
y = 13

24 , 11
8 and 5

3 ) become fractal dimensions of suitable sets of links (or sites) of the Ising
percolation model at the critical point. In particular, y = 15

8 is the fractal dimension of the
percolating cluster, y = 1 is related to the correlation length, y = 13

24 is the fractal dimension
of the red bonds (see [59]), y = 5

3 is the fractal dimension of the percolating cluster in the
presence of a boundary (see [60]) and y = 11

8 is the fractal dimension of the hull (see [61]).
Unfortunately, the operator in which we are interested, being irrelevant, cannot be realized as
a fractal dimension, but the coincidence of the other indices strongly supports the idea that it
should also appear as the subleading dimension of some suitably chosen set of links.

Some theoretical justification of this remarkable coincidence of critical indices and fractal
dimensions can be found in an interesting conjecture that was proposed for the first time in
[62] and then discussed in detail in [59, 60]. According to this conjecture, Ising percolation
is described by the q → 1 limit of the tricritical q-state Potts model in exactly the same
way in which the q → 1 limit of ordinary q-state Potts describes standard percolation. The
operator content of the q → 1 limit of the tricritical q-state Potts model can be studied with
the same Coulomb gas techniques discussed above. It turns out that it contains (together with
other operators) the non-unitary extension of the Ising model, and thus explains the above
coincidence of critical indices and fractal dimensions. Note that this conjecture is further
supported by the identification as fractal dimensions of suitable sets of links of other critical
indices that belong to the q → 1 limit of the tricritical Potts but that are outside the non-unitary
Ising class—see [60] for a discussion.

Appendix B. Resummation of simple test functions

In this appendix we consider a simple test function which behaves as (8) and whose perturbative
expansion around g = 0 is divergent but Borel summable. We show that many terms are needed
in order to obtain the correct results, and, even worse, that in this case the standard method
to set the error bars does not work properly. The estimated errors are much smaller than the
difference between the estimate and the exact value.

Consider the function

Z(g) = 1√
2π

∫ +∞

−∞
dx exp

(
−1

2
x2 − 1

4!
gx4

)
. (B1)

Its expansion in powers of g, Z(g) = ∑
k Zkg

k , is Borel summable, and the large-order
behaviour of the kth-order coefficient Zk is given by

Zk = (−1)k
(4k − 1)!!

4!kk!
∝ (− 2

3

)k
(k − 1)! [1 + O(1/k)]. (B2)
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The function Z(g) is analytic in the complex plane with a cut along the negative real axis, and,
in particular, it is analytic for g = 1. For δ ≡ 1 − g → 0 it behaves as

Z(g) = Z0 + Z1δ + O(δ2) (B3)

where Z0 = 0.918 9189 . . . and Z1 = −0.057 3155 . . . . In this case, in which the function is
analytic, the resummation method we presented in the introduction provides good estimates of
the constants appearing in (B3). One indeed obtains Z0 = 0.9189(1) and Z1 = −0.0572(3)
from the fifth-order series, and Z0 = 0.918 919(1) and Z1 = −0.057 315(3) from the 10th-
order series†. Most importantly, the method provides correct estimates of the errors.

In order to reproduce a non-analytic behaviour similar to (21), we consider the function

B(b, g) = Z(g) + c(1 − g)1+b. (B4)

Setting c = Z1, we have for g → 1

B(b, g) = Z0 + Z1δ
(
1 + δb

)
+ O(δ2). (B5)

We apply the same resummation procedure used for Z(g) to the perturbative expansion of
B(b, g). To reproduce the correction predicted in the Ising case, we fixb = 1

7 . The results of the
analysis are now much less satisfactory. Indeed, we find Z0 = 0.916(6) and Z1 = −0.112(2)
from the fifth-order series, andZ0 = 0.918(1) andZ1 = −0.103(6) from the 10th-order series.
The estimate of Z0 is not as precise as before, but the error is still correct. This is not surprising
since the non-analyticity is rather weak here, the non-analytic corrections being of the order of
δ1+b. On the other hand, the estimate ofZ1, which is determined by resumming the dB(b, g)/dg
(here, the non-analytic corrections are stronger, of the order of δb), is very imprecise and the
estimate of the error, which is obtained from the stability analysis, is completely incorrect: the
five-loop estimate differs from the exact value by more than 25 estimated error bars! Moreover,
extending the series appears to be of little help. We conjecture that a similar phenomenon is
happening in the FT estimates for N = 1. Although the perturbative results indicate ω1 ≈ 4

3
with a tiny error, the correct result is sensibly different.

We have also considered the case in which we add a term of the form Z1g/ log(1 − g),
which mimicks the behaviour of the β-function for N � 3, observing completely analogous
deviations.

We have repeated the exercise by considering a non-analytic singularity similar to that
expected in three dimensions, i.e. by setting b � 1. For example, for b = 9

10 we find
Z0 = 0.917(1) and Z1 = −0.068(4) from the fifth-order series, Z0 = 0.9186(1) and
Z1 = −0.060(2) from the 10th-order series. As expected, the effect of the non-analyticity is
much smaller and the errors are reasonable, although slightly underestimated.

Appendix C. Asymptotic expansion of large-N integrals

In this appendix we wish to compute the asymptotic expansion for 5 → 0 of integrals of the
form

In(f,5) =
∫ ∞

0
du

f (u)

[5 + δ(u)]n
(C1)

† The estimates and their errors are obtained using the procedure of [12]. The estimate is obtained from the ‘optimal’
values of the two free parameters introduced in the procedure (b and α), which are determined by maximizing the
stability of the results with respect to the order of the series analysed. The errors are related to the stability of the
results with respect to variations of the free parameters b and α around their optimal values.
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where f (u) ∼ u−p for u → ∞, and n and p are integers satisfying n � 1, p � 2. The
function δ(u) is given by

δ(u) = − 2

uξ
log

1 − ξ

1 + ξ
(C2)

where

ξ(u) =
√

u

u + 4
. (C3)

The results presented here extend appendix A of [12] to two dimensions. We wish to compute
the leading non-analytic contributions to the asymptotic expansion. For this purpose, we can
replace δ(u) and f (u) with their leading behaviour for u → ∞ and write

In(f,5) ≈
∫ ∞

1/;

du u−p

[5 + (2 log u)/u]n
(C4)

where ; is an arbitrary cut-off satisfying 0 < ; < 1. Then we make the substitution

2

u
log u = y. (C5)

For y → 0, u → ∞, equation (C5) can be solved, obtaining the asymptotic expansion

1

u
= − y

2 log(y/2)

{
1 +

∞∑
n=1

n∑
m=1

anm
[log(− log(y/2))]m

logn(y/2)

}
. (C6)

The first coefficients are a11 = a22 = 1 and a21 = −1.
Substituting this expression in (C4) and keeping only the leading contributions, we obtain

In(f,5) ≈
∫ ;

0

dy

yup−1

1

(5 + y)n
(C7)

where analytic terms have been systematically neglected.
Since p � 2, we see that In(f,5) can be written as a sum of terms of the form

Knmp(5) =
∫ ;

0
dy

[log(− log y)]p

(− log y)m(5 + y)n
(C8)

with m, n and p being integers. The non-analytic terms are due to the integrals with n � 1,
and thus we consider only this case. Now, observe that we need to consider n = 1 only, since

Knmp(5) = (−1)n−1

(n − 1)!

dn−1

d5n−1
K1mp(5). (C9)

Then, also note that

[log(− log y)]p = lim
ε→0

[
(− log y)ε − 1

ε

]p

. (C10)

Thus, it is enough to consider K1α0, where α is a real number. In the following we assume
α > 1. The final result, however, will be correct for all values of α. To compute the asymptotic
expansion, first perform a Mellin transformation, rewriting

K1α0 = −
∫ −1/2+i∞

−1/2−i∞

ds

2π i

π

sin πs
5sRα(;, s) (C11)



8168 P Calabrese et al

where

Rα(;, s) =
∫ ;

0

dy

(− log y)α
y−1−s =

∫ ∞

− log;

dt

tα
est . (C12)

The previous equation defines Rα(;, s) for Re s � 0. By rotating the t contour one can obtain
an analytic continuation in the domain Re s > 0 with a cut along the positive real axis. In the
following, we need the discontinuity at the cut. A simple calculation gives

Rα(;, s+) − Rα(;, s−) =
∫
C

dt

tα
est = 2π i

�(α)
sα−1 (C13)

where C is a contour running counterclockwise around the negative t-axis. We also need
Rα(;, 0) = (− log;)1−α/(α−1). In order to compute the asymptotic expansion of K1α0(5),
deform the s-integral, so that it goes around the positive s-axis. Taking into account the pole
at s = 0 we obtain

K1α0(5) = Rα(;, 0) −
∫ µ

0

ds

2π i

π

sin πs
5s[Rα(;, s+) − Rα(;, s−)]

−
∫
C++C−

ds

2π i

π

sin πs
5sRα(;, s) (C14)

where 0 < µ < 1 is arbitrary and C± = {s: Re s = µ ± Im s > 0}. The integral over
the lines C± is of the order of 5µ and can therefore be discarded. In order to compute the
integral over the cut, we make the substitution −s log5 = t , expand the integrand in powers
of 1/ log5 and replace the upper integration limit −µ log5 with ∞—again we make an error
of the order of 5µ. The final integrations are trivial. We obtain finally

K1α0(5) ≈ 1

α − 1
(− log;)1−α − (− log5)1−α

∞∑
k=0

bk
�(2k + α − 1)

�(α)

(
π

log5

)2k

(C15)

where the coefficients bk are defined by

1

sin x
=

∞∑
k=0

bkx
2k−1. (C16)
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[1] Parisi G 1980 Cargèse lectures (1973) J. Stat. Phys. 23 49
[2] Baker G A Jr, Nickel B G, Green M S and Meiron D I 1977 Phys. Rev. Lett. 36 1351

Baker G A Jr, Nickel B G and Meiron D I 1978 Phys. Rev. B 17 1365
[3] Orlov E V and Sokolov A I 2000 Critical thermodinamics of the two-dimensional systems in five-loop

renormalization-group approximation (in Russian) Fiz. Tverd. Tela 42 2087
(A shorter English version appears as Orlov E V and Sokolov A I 2000 Preprint hep-th/0003140)

[4] Zinn-Justin J 1996 Quantum Field Theory and Critical Phenomena 3rd edn (Oxford: Clarendon)
[5] Lipatov L N 1977 Zh. Eksp. Teor. Fiz. 72 411 (Engl. transl. 1977 Sov. Phys.–JETP 45 216)
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